Bitcoin Development: Schnorr Signatures - Edge

Ultimate glossary of crypto currency terms, acronyms and abbreviations

I thought it would be really cool to have an ultimate guide for those new to crypto currencies and the terms used. I made this mostly for beginner’s and veterans alike. I’m not sure how much use you will get out of this. Stuff gets lost on Reddit quite easily so I hope this finds its way to you. Included in this list, I have included most of the terms used in crypto-communities. I have compiled this list from a multitude of sources. The list is in alphabetical order and may include some words/terms not exclusive to the crypto world but may be helpful regardless.
2FA
Two factor authentication. I highly advise that you use it.
51% Attack:
A situation where a single malicious individual or group gains control of more than half of a cryptocurrency network’s computing power. Theoretically, it could allow perpetrators to manipulate the system and spend the same coin multiple times, stop other users from completing blocks and make conflicting transactions to a chain that could harm the network.
Address (or Addy):
A unique string of numbers and letters (both upper and lower case) used to send, receive or store cryptocurrency on the network. It is also the public key in a pair of keys needed to sign a digital transaction. Addresses can be shared publicly as a text or in the form of a scannable QR code. They differ between cryptocurrencies. You can’t send Bitcoin to an Ethereum address, for example.
Altcoin (alternative coin): Any digital currency other than Bitcoin. These other currencies are alternatives to Bitcoin regarding features and functionalities (e.g. faster confirmation time, lower price, improved mining algorithm, higher total coin supply). There are hundreds of altcoins, including Ether, Ripple, Litecoin and many many others.
AIRDROP:
An event where the investors/participants are able to receive free tokens or coins into their digital wallet.
AML: Defines Anti-Money Laundering laws**.**
ARBITRAGE:
Getting risk-free profits by trading (simultaneous buying and selling of the cryptocurrency) on two different exchanges which have different prices for the same asset.
Ashdraked:
Being Ashdraked is essentially a more detailed version of being Zhoutonged. It is when you lose all of your invested capital, but you do so specifically by shorting Bitcoin. The expression “Ashdraked” comes from a story of a Romanian cryptocurrency investor who insisted upon shorting BTC, as he had done so successfully in the past. When the price of BTC rose from USD 300 to USD 500, the Romanian investor lost all of his money.
ATH (All Time High):
The highest price ever achieved by a cryptocurrency in its entire history. Alternatively, ATL is all time low
Bearish:
A tendency of prices to fall; a pessimistic expectation that the value of a coin is going to drop.
Bear trap:
A manipulation of a stock or commodity by investors.
Bitcoin:
The very first, and the highest ever valued, mass-market open source and decentralized cryptocurrency and digital payment system that runs on a worldwide peer to peer network. It operates independently of any centralized authorities
Bitconnect:
One of the biggest scams in the crypto world. it was made popular in the meme world by screaming idiot Carlos Matos, who infamously proclaimed," hey hey heeeey” and “what's a what's a what's up wasssssssssuuuuuuuuuuuuup, BitConneeeeeeeeeeeeeeeeeeeeeeeect!”. He is now in the mentally ill meme hall of fame.
Block:
A package of permanently recorded data about transactions occurring every time period (typically about 10 minutes) on the blockchain network. Once a record has been completed and verified, it goes into a blockchain and gives way to the next block. Each block also contains a complex mathematical puzzle with a unique answer, without which new blocks can’t be added to the chain.
Blockchain:
An unchangeable digital record of all transactions ever made in a particular cryptocurrency and shared across thousands of computers worldwide. It has no central authority governing it. Records, or blocks, are chained to each other using a cryptographic signature. They are stored publicly and chronologically, from the genesis block to the latest block, hence the term blockchain. Anyone can have access to the database and yet it remains incredibly difficult to hack.
Bullish:
A tendency of prices to rise; an optimistic expectation that a specific cryptocurrency will do well and its value is going to increase.
BTFD:
Buy the fucking dip. This advise was bestowed upon us by the gods themselves. It is the iron code to crypto enthusiasts.
Bull market:
A market that Cryptos are going up.
Consensus:
An agreement among blockchain participants on the validity of data. Consensus is reached when the majority of nodes on the network verify that the transaction is 100% valid.
Crypto bubble:
The instability of cryptocurrencies in terms of price value
Cryptocurrency:
A type of digital currency, secured by strong computer code (cryptography), that operates independently of any middlemen or central authoritie
Cryptography:
The art of converting sensitive data into a format unreadable for unauthorized users, which when decoded would result in a meaningful statement.
Cryptojacking:
The use of someone else’s device and profiting from its computational power to mine cryptocurrency without their knowledge and consent.
Crypto-Valhalla:
When HODLers(holders) eventually cash out they go to a place called crypto-Valhalla. The strong will be separated from the weak and the strong will then be given lambos.
DAO:
Decentralized Autonomous Organizations. It defines A blockchain technology inspired organization or corporation that exists and operates without human intervention.
Dapp (decentralized application):
An open-source application that runs and stores its data on a blockchain network (instead of a central server) to prevent a single failure point. This software is not controlled by the single body – information comes from people providing other people with data or computing power.
Decentralized:
A system with no fundamental control authority that governs the network. Instead, it is jointly managed by all users to the system.
Desktop wallet:
A wallet that stores the private keys on your computer, which allow the spending and management of your bitcoins.
DILDO:
Long red or green candles. This is a crypto signal that tells you that it is not favorable to trade at the moment. Found on candlestick charts.
Digital Signature:
An encrypted digital code attached to an electronic document to prove that the sender is who they say they are and confirm that a transaction is valid and should be accepted by the network.
Double Spending:
An attack on the blockchain where a malicious user manipulates the network by sending digital money to two different recipients at exactly the same time.
DYOR:
Means do your own research.
Encryption:
Converting data into code to protect it from unauthorized access, so that only the intended recipient(s) can decode it.
Eskrow:
the practice of having a third party act as an intermediary in a transaction. This third party holds the funds on and sends them off when the transaction is completed.
Ethereum:
Ethereum is an open source, public, blockchain-based platform that runs smart contracts and allows you to build dapps on it. Ethereum is fueled by the cryptocurrency Ether.
Exchange:
A platform (centralized or decentralized) for exchanging (trading) different forms of cryptocurrencies. These exchanges allow you to exchange cryptos for local currency. Some popular exchanges are Coinbase, Bittrex, Kraken and more.
Faucet:
A website which gives away free cryptocurrencies.
Fiat money:
Fiat currency is legal tender whose value is backed by the government that issued it, such as the US dollar or UK pound.
Fork:
A split in the blockchain, resulting in two separate branches, an original and a new alternate version of the cryptocurrency. As a single blockchain forks into two, they will both run simultaneously on different parts of the network. For example, Bitcoin Cash is a Bitcoin fork.
FOMO:
Fear of missing out.
Frictionless:
A system is frictionless when there are zero transaction costs or trading retraints.
FUD:
Fear, Uncertainty and Doubt regarding the crypto market.
Gas:
A fee paid to run transactions, dapps and smart contracts on Ethereum.
Halving:
A 50% decrease in block reward after the mining of a pre-specified number of blocks. Every 4 years, the “reward” for successfully mining a block of bitcoin is reduced by half. This is referred to as “Halving”.
Hardware wallet:
Physical wallet devices that can securely store cryptocurrency maximally. Some examples are Ledger Nano S**,** Digital Bitbox and more**.**
Hash:
The process that takes input data of varying sizes, performs an operation on it and converts it into a fixed size output. It cannot be reversed.
Hashing:
The process by which you mine bitcoin or similar cryptocurrency, by trying to solve the mathematical problem within it, using cryptographic hash functions.
HODL:
A Bitcoin enthusiast once accidentally misspelled the word HOLD and it is now part of the bitcoin legend. It can also mean hold on for dear life.
ICO (Initial Coin Offering):
A blockchain-based fundraising mechanism, or a public crowd sale of a new digital coin, used to raise capital from supporters for an early stage crypto venture. Beware of these as there have been quite a few scams in the past.
John mcAfee:
A man who will one day eat his balls on live television for falsely predicting bitcoin going to 100k. He has also become a small meme within the crypto community for his outlandish claims.
JOMO:
Joy of missing out. For those who are so depressed about missing out their sadness becomes joy.
KYC:
Know your customer(alternatively consumer).
Lambo:
This stands for Lamborghini. A small meme within the investing community where the moment someone gets rich they spend their earnings on a lambo. One day we will all have lambos in crypto-valhalla.
Ledger:
Away from Blockchain, it is a book of financial transactions and balances. In the world of crypto, the blockchain functions as a ledger. A digital currency’s ledger records all transactions which took place on a certain block chain network.
Leverage:
Trading with borrowed capital (margin) in order to increase the potential return of an investment.
Liquidity:
The availability of an asset to be bought and sold easily, without affecting its market price.
of the coins.
Margin trading:
The trading of assets or securities bought with borrowed money.
Market cap/MCAP:
A short-term for Market Capitalization. Market Capitalization refers to the market value of a particular cryptocurrency. It is computed by multiplying the Price of an individual unit of coins by the total circulating supply.
Miner:
A computer participating in any cryptocurrency network performing proof of work. This is usually done to receive block rewards.
Mining:
The act of solving a complex math equation to validate a blockchain transaction using computer processing power and specialized hardware.
Mining contract:
A method of investing in bitcoin mining hardware, allowing anyone to rent out a pre-specified amount of hashing power, for an agreed amount of time. The mining service takes care of hardware maintenance, hosting and electricity costs, making it simpler for investors.
Mining rig:
A computer specially designed for mining cryptocurrencies.
Mooning:
A situation the price of a coin rapidly increases in value. Can also be used as: “I hope bitcoin goes to the moon”
Node:
Any computing device that connects to the blockchain network.
Open source:
The practice of sharing the source code for a piece of computer software, allowing it to be distributed and altered by anyone.
OTC:
Over the counter. Trading is done directly between parties.
P2P (Peer to Peer):
A type of network connection where participants interact directly with each other rather than through a centralized third party. The system allows the exchange of resources from A to B, without having to go through a separate server.
Paper wallet:
A form of “cold storage” where the private keys are printed onto a piece of paper and stored offline. Considered as one of the safest crypto wallets, the truth is that it majors in sweeping coins from your wallets.
Pre mining:
The mining of a cryptocurrency by its developers before it is released to the public.
Proof of stake (POS):
A consensus distribution algorithm which essentially rewards you based upon the amount of the coin that you own. In other words, more investment in the coin will leads to more gain when you mine with this protocol In Proof of Stake, the resource held by the “miner” is their stake in the currency.
PROOF OF WORK (POW) :
The competition of computers competing to solve a tough crypto math problem. The first computer that does this is allowed to create new blocks and record information.” The miner is then usually rewarded via transaction fees.
Protocol:
A standardized set of rules for formatting and processing data.
Public key / private key:
A cryptographic code that allows a user to receive cryptocurrencies into an account. The public key is made available to everyone via a publicly accessible directory, and the private key remains confidential to its respective owner. Because the key pair is mathematically related, whatever is encrypted with a public key may only be decrypted by its corresponding private key.
Pump and dump:
Massive buying and selling activity of cryptocurrencies (sometimes organized and to one’s benefit) which essentially result in a phenomenon where the significant surge in the value of coin followed by a huge crash take place in a short time frame.
Recovery phrase:
A set of phrases you are given whereby you can regain or access your wallet should you lose the private key to your wallets — paper, mobile, desktop, and hardware wallet. These phrases are some random 12–24 words. A recovery Phrase can also be called as Recovery seed, Seed Key, Recovery Key, or Seed Phrase.
REKT:
Referring to the word “wrecked”. It defines a situation whereby an investor or trader who has been ruined utterly following the massive losses suffered in crypto industry.
Ripple:
An alternative payment network to Bitcoin based on similar cryptography. The ripple network uses XRP as currency and is capable of sending any asset type.
ROI:
Return on investment.
Safu:
A crypto term for safe popularized by the Bizonnaci YouTube channel after the CEO of Binance tweeted
“Funds are safe."
“the exchage I use got hacked!”“Oh no, are your funds safu?”
“My coins better be safu!”


Sats/Satoshi:
The smallest fraction of a bitcoin is called a “satoshi” or “sat”. It represents one hundred-millionth of a bitcoin and is named after Satoshi Nakamoto.
Satoshi Nakamoto:
This was the pseudonym for the mysterious creator of Bitcoin.
Scalability:
The ability of a cryptocurrency to contain the massive use of its Blockchain.
Sharding:
A scaling solution for the Blockchain. It is generally a method that allows nodes to have partial copies of the complete blockchain in order to increase overall network performance and consensus speeds.
Shitcoin:
Coin with little potential or future prospects.
Shill:
Spreading buzz by heavily promoting a particular coin in the community to create awareness.
Short position:
Selling of a specific cryptocurrency with an expectation that it will drop in value.
Silk road:
The online marketplace where drugs and other illicit items were traded for Bitcoin. This marketplace is using accessed through “TOR”, and VPNs. In October 2013, a Silk Road was shut down in by the FBI.
Smart Contract:
Certain computational benchmarks or barriers that have to be met in turn for money or data to be deposited or even be used to verify things such as land rights.
Software Wallet:
A crypto wallet that exists purely as software files on a computer. Usually, software wallets can be generated for free from a variety of sources.
Solidity:
A contract-oriented coding language for implementing smart contracts on Ethereum. Its syntax is similar to that of JavaScript.
Stable coin:
A cryptocoin with an extremely low volatility that can be used to trade against the overall market.
Staking:
Staking is the process of actively participating in transaction validation (similar to mining) on a proof-of-stake (PoS) blockchain. On these blockchains, anyone with a minimum-required balance of a specific cryptocurrency can validate transactions and earn Staking rewards.
Surge:
When a crypto currency appreciates or goes up in price.
Tank:
The opposite of mooning. When a coin tanks it can also be described as crashing.
Tendies
For traders , the chief prize is “tendies” (chicken tenders, the treat an overgrown man-child receives for being a “Good Boy”) .
Token:
A unit of value that represents a digital asset built on a blockchain system. A token is usually considered as a “coin” of a cryptocurrency, but it really has a wider functionality.
TOR: “The Onion Router” is a free web browser designed to protect users’ anonymity and resist censorship. Tor is usually used surfing the web anonymously and access sites on the “Darkweb”.
Transaction fee:
An amount of money users are charged from their transaction when sending cryptocurrencies.
Volatility:
A measure of fluctuations in the price of a financial instrument over time. High volatility in bitcoin is seen as risky since its shifting value discourages people from spending or accepting it.
Wallet:
A file that stores all your private keys and communicates with the blockchain to perform transactions. It allows you to send and receive bitcoins securely as well as view your balance and transaction history.
Whale:
An investor that holds a tremendous amount of cryptocurrency. Their extraordinary large holdings allow them to control prices and manipulate the market.
Whitepaper:

A comprehensive report or guide made to understand an issue or help decision making. It is also seen as a technical write up that most cryptocurrencies provide to take a deep look into the structure and plan of the cryptocurrency/Blockchain project. Satoshi Nakamoto was the first to release a whitepaper on Bitcoin, titled “Bitcoin: A Peer-to-Peer Electronic Cash System” in late 2008.
And with that I finally complete my odyssey. I sincerely hope that this helped you and if you are new, I welcome you to crypto. If you read all of that I hope it increased, you in knowledge.
my final definition:
Crypto-Family:
A collection of all the HODLers and crypto fanatics. A place where all people alike unite over a love for crypto.
We are all in this together as we pioneer the new world that is crypto currency. I wish you a great day and Happy HODLing.
-u/flacciduck
feel free to comment words or terms that you feel should be included or about any errors I made.
Edit1:some fixes were made and added words.
submitted by flacciduck to CryptoCurrency [link] [comments]

Bob The Magic Custodian



Summary: Everyone knows that when you give your assets to someone else, they always keep them safe. If this is true for individuals, it is certainly true for businesses.
Custodians always tell the truth and manage funds properly. They won't have any interest in taking the assets as an exchange operator would. Auditors tell the truth and can't be misled. That's because organizations that are regulated are incapable of lying and don't make mistakes.

First, some background. Here is a summary of how custodians make us more secure:

Previously, we might give Alice our crypto assets to hold. There were risks:

But "no worries", Alice has a custodian named Bob. Bob is dressed in a nice suit. He knows some politicians. And he drives a Porsche. "So you have nothing to worry about!". And look at all the benefits we get:
See - all problems are solved! All we have to worry about now is:
It's pretty simple. Before we had to trust Alice. Now we only have to trust Alice, Bob, and all the ways in which they communicate. Just think of how much more secure we are!

"On top of that", Bob assures us, "we're using a special wallet structure". Bob shows Alice a diagram. "We've broken the balance up and store it in lots of smaller wallets. That way", he assures her, "a thief can't take it all at once". And he points to a historic case where a large sum was taken "because it was stored in a single wallet... how stupid".
"Very early on, we used to have all the crypto in one wallet", he said, "and then one Christmas a hacker came and took it all. We call him the Grinch. Now we individually wrap each crypto and stick it under a binary search tree. The Grinch has never been back since."

"As well", Bob continues, "even if someone were to get in, we've got insurance. It covers all thefts and even coercion, collusion, and misplaced keys - only subject to the policy terms and conditions." And with that, he pulls out a phone-book sized contract and slams it on the desk with a thud. "Yep", he continues, "we're paying top dollar for one of the best policies in the country!"
"Can I read it?' Alice asks. "Sure," Bob says, "just as soon as our legal team is done with it. They're almost through the first chapter." He pauses, then continues. "And can you believe that sales guy Mike? He has the same year Porsche as me. I mean, what are the odds?"

"Do you use multi-sig?", Alice asks. "Absolutely!" Bob replies. "All our engineers are fully trained in multi-sig. Whenever we want to set up a new wallet, we generate 2 separate keys in an air-gapped process and store them in this proprietary system here. Look, it even requires the biometric signature from one of our team members to initiate any withdrawal." He demonstrates by pressing his thumb into the display. "We use a third-party cloud validation API to match the thumbprint and authorize each withdrawal. The keys are also backed up daily to an off-site third-party."
"Wow that's really impressive," Alice says, "but what if we need access for a withdrawal outside of office hours?" "Well that's no issue", Bob says, "just send us an email, call, or text message and we always have someone on staff to help out. Just another part of our strong commitment to all our customers!"

"What about Proof of Reserve?", Alice asks. "Of course", Bob replies, "though rather than publish any blockchain addresses or signed transaction, for privacy we just do a SHA256 refactoring of the inverse hash modulus for each UTXO nonce and combine the smart contract coefficient consensus in our hyperledger lightning node. But it's really simple to use." He pushes a button and a large green checkmark appears on a screen. "See - the algorithm ran through and reserves are proven."
"Wow", Alice says, "you really know your stuff! And that is easy to use! What about fiat balances?" "Yeah, we have an auditor too", Bob replies, "Been using him for a long time so we have quite a strong relationship going! We have special books we give him every year and he's very efficient! Checks the fiat, crypto, and everything all at once!"

"We used to have a nice offline multi-sig setup we've been using without issue for the past 5 years, but I think we'll move all our funds over to your facility," Alice says. "Awesome", Bob replies, "Thanks so much! This is perfect timing too - my Porsche got a dent on it this morning. We have the paperwork right over here." "Great!", Alice replies.
And with that, Alice gets out her pen and Bob gets the contract. "Don't worry", he says, "you can take your crypto-assets back anytime you like - just subject to our cancellation policy. Our annual management fees are also super low and we don't adjust them often".

How many holes have to exist for your funds to get stolen?
Just one.

Why are we taking a powerful offline multi-sig setup, widely used globally in hundreds of different/lacking regulatory environments with 0 breaches to date, and circumventing it by a demonstrably weak third party layer? And paying a great expense to do so?
If you go through the list of breaches in the past 2 years to highly credible organizations, you go through the list of major corporate frauds (only the ones we know about), you go through the list of all the times platforms have lost funds, you go through the list of times and ways that people have lost their crypto from identity theft, hot wallet exploits, extortion, etc... and then you go through this custodian with a fine-tooth comb and truly believe they have value to add far beyond what you could, sticking your funds in a wallet (or set of wallets) they control exclusively is the absolute worst possible way to take advantage of that security.

The best way to add security for crypto-assets is to make a stronger multi-sig. With one custodian, what you are doing is giving them your cryptocurrency and hoping they're honest, competent, and flawlessly secure. It's no different than storing it on a really secure exchange. Maybe the insurance will cover you. Didn't work for Bitpay in 2015. Didn't work for Yapizon in 2017. Insurance has never paid a claim in the entire history of cryptocurrency. But maybe you'll get lucky. Maybe your exact scenario will buck the trend and be what they're willing to cover. After the large deductible and hopefully without a long and expensive court battle.

And you want to advertise this increase in risk, the lapse of judgement, an accident waiting to happen, as though it's some kind of benefit to customers ("Free institutional-grade storage for your digital assets.")? And then some people are writing to the OSC that custodians should be mandatory for all funds on every exchange platform? That this somehow will make Canadians as a whole more secure or better protected compared with standard air-gapped multi-sig? On what planet?

Most of the problems in Canada stemmed from one thing - a lack of transparency. If Canadians had known what a joke Quadriga was - it wouldn't have grown to lose $400m from hard-working Canadians from coast to coast to coast. And Gerald Cotten would be in jail, not wherever he is now (at best, rotting peacefully). EZ-BTC and mister Dave Smilie would have been a tiny little scam to his friends, not a multi-million dollar fraud. Einstein would have got their act together or been shut down BEFORE losing millions and millions more in people's funds generously donated to criminals. MapleChange wouldn't have even been a thing. And maybe we'd know a little more about CoinTradeNewNote - like how much was lost in there. Almost all of the major losses with cryptocurrency exchanges involve deception with unbacked funds.
So it's great to see transparency reports from BitBuy and ShakePay where someone independently verified the backing. The only thing we don't have is:
It's not complicated to validate cryptocurrency assets. They need to exist, they need to be spendable, and they need to cover the total balances. There are plenty of credible people and firms across the country that have the capacity to reasonably perform this validation. Having more frequent checks by different, independent, parties who publish transparent reports is far more valuable than an annual check by a single "more credible/official" party who does the exact same basic checks and may or may not publish anything. Here's an example set of requirements that could be mandated:
There are ways to structure audits such that neither crypto assets nor customer information are ever put at risk, and both can still be properly validated and publicly verifiable. There are also ways to structure audits such that they are completely reasonable for small platforms and don't inhibit innovation in any way. By making the process as reasonable as possible, we can completely eliminate any reason/excuse that an honest platform would have for not being audited. That is arguable far more important than any incremental improvement we might get from mandating "the best of the best" accountants. Right now we have nothing mandated and tons of Canadians using offshore exchanges with no oversight whatsoever.

Transparency does not prove crypto assets are safe. CoinTradeNewNote, Flexcoin ($600k), and Canadian Bitcoins ($100k) are examples where crypto-assets were breached from platforms in Canada. All of them were online wallets and used no multi-sig as far as any records show. This is consistent with what we see globally - air-gapped multi-sig wallets have an impeccable record, while other schemes tend to suffer breach after breach. We don't actually know how much CoinTrader lost because there was no visibility. Rather than publishing details of what happened, the co-founder of CoinTrader silently moved on to found another platform - the "most trusted way to buy and sell crypto" - a site that has no information whatsoever (that I could find) on the storage practices and a FAQ advising that “[t]rading cryptocurrency is completely safe” and that having your own wallet is “entirely up to you! You can certainly keep cryptocurrency, or fiat, or both, on the app.” Doesn't sound like much was learned here, which is really sad to see.
It's not that complicated or unreasonable to set up a proper hardware wallet. Multi-sig can be learned in a single course. Something the equivalent complexity of a driver's license test could prevent all the cold storage exploits we've seen to date - even globally. Platform operators have a key advantage in detecting and preventing fraud - they know their customers far better than any custodian ever would. The best job that custodians can do is to find high integrity individuals and train them to form even better wallet signatories. Rather than mandating that all platforms expose themselves to arbitrary third party risks, regulations should center around ensuring that all signatories are background-checked, properly trained, and using proper procedures. We also need to make sure that signatories are empowered with rights and responsibilities to reject and report fraud. They need to know that they can safely challenge and delay a transaction - even if it turns out they made a mistake. We need to have an environment where mistakes are brought to the surface and dealt with. Not one where firms and people feel the need to hide what happened. In addition to a knowledge-based test, an auditor can privately interview each signatory to make sure they're not in coercive situations, and we should make sure they can freely and anonymously report any issues without threat of retaliation.
A proper multi-sig has each signature held by a separate person and is governed by policies and mutual decisions instead of a hierarchy. It includes at least one redundant signature. For best results, 3of4, 3of5, 3of6, 4of5, 4of6, 4of7, 5of6, or 5of7.

History has demonstrated over and over again the risk of hot wallets even to highly credible organizations. Nonetheless, many platforms have hot wallets for convenience. While such losses are generally compensated by platforms without issue (for example Poloniex, Bitstamp, Bitfinex, Gatecoin, Coincheck, Bithumb, Zaif, CoinBene, Binance, Bitrue, Bitpoint, Upbit, VinDAX, and now KuCoin), the public tends to focus more on cases that didn't end well. Regardless of what systems are employed, there is always some level of risk. For that reason, most members of the public would prefer to see third party insurance.
Rather than trying to convince third party profit-seekers to provide comprehensive insurance and then relying on an expensive and slow legal system to enforce against whatever legal loopholes they manage to find each and every time something goes wrong, insurance could be run through multiple exchange operators and regulators, with the shared interest of having a reputable industry, keeping costs down, and taking care of Canadians. For example, a 4 of 7 multi-sig insurance fund held between 5 independent exchange operators and 2 regulatory bodies. All Canadian exchanges could pay premiums at a set rate based on their needed coverage, with a higher price paid for hot wallet coverage (anything not an air-gapped multi-sig cold wallet). Such a model would be much cheaper to manage, offer better coverage, and be much more reliable to payout when needed. The kind of coverage you could have under this model is unheard of. You could even create something like the CDIC to protect Canadians who get their trading accounts hacked if they can sufficiently prove the loss is legitimate. In cases of fraud, gross negligence, or insolvency, the fund can be used to pay affected users directly (utilizing the last transparent balance report in the worst case), something which private insurance would never touch. While it's recommended to have official policies for coverage, a model where members vote would fully cover edge cases. (Could be similar to the Supreme Court where justices vote based on case law.)
Such a model could fully protect all Canadians across all platforms. You can have a fiat coverage governed by legal agreements, and crypto-asset coverage governed by both multi-sig and legal agreements. It could be practical, affordable, and inclusive.

Now, we are at a crossroads. We can happily give up our freedom, our innovation, and our money. We can pay hefty expenses to auditors, lawyers, and regulators year after year (and make no mistake - this cost will grow to many millions or even billions as the industry grows - and it will be borne by all Canadians on every platform because platforms are not going to eat up these costs at a loss). We can make it nearly impossible for any new platform to enter the marketplace, forcing Canadians to use the same stagnant platforms year after year. We can centralize and consolidate the entire industry into 2 or 3 big players and have everyone else fail (possibly to heavy losses of users of those platforms). And when a flawed security model doesn't work and gets breached, we can make it even more complicated with even more people in suits making big money doing the job that blockchain was supposed to do in the first place. We can build a system which is so intertwined and dependent on big government, traditional finance, and central bankers that it's future depends entirely on that of the fiat system, of fractional banking, and of government bail-outs. If we choose this path, as history has shown us over and over again, we can not go back, save for revolution. Our children and grandchildren will still be paying the consequences of what we decided today.
Or, we can find solutions that work. We can maintain an open and innovative environment while making the adjustments we need to make to fully protect Canadian investors and cryptocurrency users, giving easy and affordable access to cryptocurrency for all Canadians on the platform of their choice, and creating an environment in which entrepreneurs and problem solvers can bring those solutions forward easily. None of the above precludes innovation in any way, or adds any unreasonable cost - and these three policies would demonstrably eliminate or resolve all 109 historic cases as studied here - that's every single case researched so far going back to 2011. It includes every loss that was studied so far not just in Canada but globally as well.
Unfortunately, finding answers is the least challenging part. Far more challenging is to get platform operators and regulators to agree on anything. My last post got no response whatsoever, and while the OSC has told me they're happy for industry feedback, I believe my opinion alone is fairly meaningless. This takes the whole community working together to solve. So please let me know your thoughts. Please take the time to upvote and share this with people. Please - let's get this solved and not leave it up to other people to do.

Facts/background/sources (skip if you like):



Thoughts?
submitted by azoundria2 to QuadrigaInitiative [link] [comments]

Meet the YFDAI Team!

Meet the YFDAI Team!

https://preview.redd.it/yq470s2kmcu51.png?width=1280&format=png&auto=webp&s=4c04f1499dca093a4550beb19ae8c7626326959e
Over the course of mere months, the DeFi space has grown to the tune of billions in 2020. While DeFi has earned its title as the next hottest crypto trend, its popularity has shown to be a double-edged sword. Reports of scams and “rug pulls” have volleyed into crypto news outlets, social media, and discussion groups, damaging the reputation of the DeFi space.
DeFi is unique in that the tenets of trust and decentralization has normalized the practice of anonymity to the point where nearly every single DeFi team launches anonymously. While the freedom to create DeFi tools does support the notion that anyone should be able to create an honest financial protocol for the goodwill of the people, the opposite effect often occurs. If the past few months has proven anything, it’s that the normalization of anonymity has acted as both the greatest weapon and the greatest defence for fraudulent actors and dishonest entities. Because of this, DeFi is often seen as a free-for-all minefield as countless exit scams and “rugpulls” have become the norm. Having this as an accepted vice of DeFi shouldn’t mean investors should normalize risk of losses. It should inspire projects to set a higher standard in the DeFi space.
We are excited to announce that the YFDAI team has taken the tenets of decentralized finance and expanded on them. As a DeFi protocol, we champion decentralization and the collective action of the community to pave the road towards true transparency and security for all. After countless hours of legal counseling, we’re proud to announce that we will be among the very few DeFi projects to go public and among the first to set a new precedent for the DeFi space.
Say hello to the YFDAI team.
Meet Pritha Paul (Olivia) — Chief Strategic — Volunteer

https://preview.redd.it/jqqax671lcu51.jpg?width=357&format=pjpg&auto=webp&s=66703ab44c96cea71df47178627e586a8d70a1e5
Olivia is both a software engineer and a Businesswoman. Having been an avid fan of blockchain and trader of cryptocurrencies, Olivia felt the need to contribute her expertise to the cryptocurrency space. This desire prompted her to create YFDAI, one of DeFi’s most secure and trusted protocols. Seeing the cryptocurrency space as a professional programmer, Olivia knows the importance of making a clean and secure DeFi protocol.
With the rate of fraudulent projects ascending contemporaneously with the rise of DeFi, Olivia knew it was crucial to have a trusted and well-secured protocol that can guide as an example for other projects to follow. Along with this idea, Olivia felt that for DeFi to reach its highest potential, there needed to be an ecosystem that protects investors and supports DeFi projects looking to bring real value to the space. With this in mind, Olivia came up with YFDAI’s signature SafeSwap and LaunchPad platforms.
Olivia has a number of qualifications and holds a bachelor’s in Computer Applications. Some of her advanced programming languages include: C, C++, JAVA, Python, Oracle.
https://www.linkedin.com/in/pritha-paul-olivia-a576b71b9/
Meet Tapas Paul (Rocky) — Lead Dev — Volunteer

https://preview.redd.it/otog4vkclcu51.jpg?width=357&format=pjpg&auto=webp&s=c668d0b6ac5573757030a609ed563ee49d734ac7
Doubling as a software developer and website designer, Tapas carries ample experience in web development and design. Having been familiar with cryptocurrencies for years, his initial descent into the space came in the golden year of 2017. Since then, Tapas has been engaged in crypto and felt the need to create a truly honest and secure DeFi platform together with Pritha. Tapas’s vast expertise in web development and blockchain gives YFDAI an edge in becoming one of the top DeFi protocols in the space.
Tapas has a diverse range of tech experience that range from creating web applications and front-end designs for various startups to working as a senior blockchain developer for distributed solidity systems for complicated DAPPs. Since then, Tapas has provided Ethereum and TRON consulting to multiple blockchain startups entering the space.
Some of Tapas expertise and advanced programming languages include- Solidity, Web3 TronWeb, JavaScript, MongoDB, ExpressJS, ReactJS Node.JS React Native, HTML5, CSS3, Distributed Ledger Technology , Ethereum and TRON DAPPs, Authentication systems, Real Time Web Apps.
https://www.linkedin.com/in/tapas-paul-rocky-4609781b2/
Meet Ankit Ruthala (Thore) — Chief Business Development — Volunteer

https://preview.redd.it/0b7vqesglcu51.jpg?width=357&format=pjpg&auto=webp&s=f5aaaaf903753cd2373b0bc32d924f8729bbcb41
Thore carries a Bachelor’s in Mechanical Engineering with fundamental engineering and dynamics experience. He has extensive background experience in both engineering and blockchain development. With the ever-increasing level of innovation that is occurring in the blockchain and cryptocurrency space, Thore felt the need to contribute his own knowledge and expertise to the field. Thore’s extensive experience in the field is projected into the YFDAI project with the end-user in mind. Being proficient in both blockchain literacy and technical analyses, Thore understands the cryptocurrency space from both a developer and investor perspective.
https://www.linkedin.com/in/ankit-runthala-752a4785
Meet Wesley — Security Consultant — Volunteer

https://preview.redd.it/d4738ojklcu51.jpg?width=357&format=pjpg&auto=webp&s=c98608b8f71087285cf14e7bd8be2d8125c978d6
Wesley specializes in Infrastructure and security management with a background in economics. Having been involved in the cryptocurrency scene for over three years, Wesley has had ample exposure to the world of blockchain and cryptocurrencies. Since 2017, Wesley has worked as an agent for BTC Direct and in Binance community management.
https://www.linkedin.com/in/wesley-thijssen-223813134/
Meet Cristian- Graphic Designer — Volunteer

https://preview.redd.it/nb91hb6qlcu51.jpg?width=357&format=pjpg&auto=webp&s=256969502f4223b56a9f615e6445a6340660a68b
Despite his previous work experience as a computer programmer, Cristian found his niche excelling in graphic design and maximizing brand identity. After winning over 400 graphic design competitions, Cristian now works as a dedicated graphic designer. Living by the mantra of “every profession is an act of service”, Cristian’s passion is manifested through his works in design, brand awareness, and customer satisfaction.
https://99designs.com/profiles/oakbrand
Meet Cris Content Writer — Volunteer

https://preview.redd.it/y6fgolqulcu51.jpg?width=357&format=pjpg&auto=webp&s=46f981373a8b011cf570bf50ef46b5e87b395c4e
Cris first began his cryptocurrency journey in the summer of 2017. Since then, he has been obsessed with everything cryptocurrency and blockchain related. After being featured on a series of cryptocurrency publications on Medium, Cris found his way into writing and managing a variety of cryptocurrency startups. Cris now continues pursuing his passion in cryptocurrency while balancing life as a university student.
https://www.linkedin.com/m/in/cris-montoya-1738b61b9-Cris/
Meet Christof Waton — Business Development Consultant — Volunteer

https://preview.redd.it/2r3vb6u1mcu51.jpg?width=357&format=pjpg&auto=webp&s=ca5a3c009dd7a32211bb2c141c13f6ccddeb04a2
Christof currently holds a bachelor’s in data communication and is currently completing his masters in Digital Currencies. His initial descent into cryptocurrencies came when he first bought Bitcoin in 2014. Since then, Christof has led his professional career in a variety of fields in and out of the crypto space. Within the crypto space, Christof has held positions as chief business development officer for both ExMarkets and CoinMargin. Outside of the crypto space Christof led as a consultant for both Dubai Hills Fund and Verifo, an e-money institution. After years of experience in both the financial and crypto industry, Christof has experienced cryptocurrency through the lens of a professional, investor, and an enthusiast.
https://www.linkedin.com/in/watonchristof/
Meet Philip Dow — Head Advisor — Volunteer

https://preview.redd.it/a7yu2nd5mcu51.jpg?width=357&format=pjpg&auto=webp&s=cd00c47f55530afb4570808168a26d88c3cf7529
Phil operates as a strategic executive with a high-level background in project management, business development, and marketing. Phil first brought his expertise to the cryptocurrency field in 2016. Phil carries a wealth of knowledge as his years in crypto garnered him key connections with a variety of different cryptocurrency partners ranging from, developers, project CEOs, and marketing.
For the past 4 years Phil has brought coverage to a multitude of different blockchain companies, each offering unique expertise and applications in a wide variety of fields.
https://www.linkedin.com/in/philipdow55/
Now that the team identities have been released this dispels the “Elephant in the room”. The fact that the team chose to become non-anon opens up many doors that would otherwise be closed. The specifics of those opportunities will be made clear in the upcoming whitepaper and future announcements.
Even though the names and faces of the founders behind the project have been revealed, please note that there are many people who are working on the YFDAI project on a contractual basis and volunteer basis who have not been included in the disclosure. There are experts and advisors in the fields of business development, economics, law, and other areas vital to any business that play a major role in the success of YFDAI and who share the vision of the founders to clean up the DeFi space and offer a safe, reliable, and secure suite of DeFi products to the public.
While the team behind a crypto project is vital, the ultimate success of any DeFi project relies on the technology, the code, and the community. YFDAI’s technology and code have been designed to be bulletproof in order to maximize the safety and security for the end user. In the not too distant future, YFDAI’s business model envisions the everyday decisions to ultimately be made by you, the community, by way of the DAO as governance is turned over to the token holders.
To ensure we are operating as securely and compliantly as possible YFDAI has been incorporated as a Technology business in Singapore:
Company Name — Tejster Technologies PTE. LTD. Registration No — 202031933C Address — 50,Raffles Place,#37–00,Singapore Land Tower, Singapore (048623)
To finalise the compliance aspect YFDAI is in the process of obtaining full Financial Services regulation by means of receiving compliance and registration in the Republic of Estonia.
This will be a two stage process with an initial Virtual Currency Exchange and E-Wallet licence currently being sought. YDFAI’s legal representatives have moved this to an advanced stage and expect this to be finalized in Q4 2020. It is at this point that the team shall resume their full job titles and the term “Volunteer” will no longer be required.
The licenses will open up a plethora of opportunities which will be fully detailed in our soon to be released whitepaper and will also provide YFDAI with a level of accreditation that will provide users with full peace of mind.
Once YFDAI secures the Financial Services accreditation listed above, YFDAI will have full insurance coverage of the project’s financial holdings and transactions, including project wallets and user funds.
Thank you for your support and we look forward to setting a new standard of self regulation that will revolutionize the DeFI arena and level the playing field for all participants while minimizing the fraud and desecration of the bad actors who have infiltrated the DeFi space.
- YFDAI Team
Visit us on our website and chat with us on Telegram!
Website: https://www.yfdai.finance
Telegram Community: https://t.me/yfdaifinance
Telegram Announcements: https://t.me/yfdai
Linkedin: https://www.linkedin.com/company/yfdai-finance
submitted by YFDAIFinance to u/YFDAIFinance [link] [comments]

How DAO users can truly control their voting rights

How DAO users can truly control their voting rights
https://blockchaintopbuzz.medium.com/how-dao-users-can-truly-control-their-voting-rights-f945c9c6b65e
Aelf proposed a solution that gives the control of the voting rights back to users by classifying token permissions.
As of today, there are still few complete businesses. In addition to mining and building trading platforms, it is difficult to create a complete business model. Moreover, various trading platforms have gradually grown into enterprises with comprehensive products in the blockchain industry, including wallets, nodes, lending, mining pools, etc.
At the same time, cloud services can reduce the cost of building small exchanges, but they can also lead to big trading platforms monopolizing data. For example, some Internet companies provide free cloud services in order to collect more valuable data.
Currently, Ethereum, which has the richest DeFi ecosystem, is gradually upgrading to V2.0, and its consensus protocol will also be upgraded to PoS. Governance voting can be regarded as the most important feature in the PoS ecosystem.
This year, Yearn.Finance rose to sudden prominence. But due to the governance problem, its community members initiated a hard fork, resulting in YFII. Another DeFi project, YAM, had a unfixable rebase function error. The founding team apologized for the error and announced a ‘Migration Plan’, which will turn the project over to the community.
For a while, governance voting became all the rage. However, the increasingly bigger trading platforms have been criticized by users in governance voting. Is there a proper solution to handling the relationship between the trading platform and governance voting?

What will we lose when trading platforms monopolize the blockchain industry?

In June 2018, during the BP node election before the EOS mainnet launch, node voting began to have a crisis of confidence between token holders and the trading platform. it is widely believed that the top 20 holders of trading platform wallets held about 40% of all the EOS in circulation.
Since then, many trading platforms have enabled the “User Authorization” interface. EOS holders can authorize the token voting rights to the trading platform, who will vote on behalf of the users. The rule caused a backlash from users, forcing these trading platforms to change the rule immediately so that EOS holders could vote on their preferred BP nodes.
After the EOS BP node votes, whether the trading platform has the token voting right has been occasionally discussed, but fewhave noticed it.
Two years later, Justin Sun, founder of TRON, made a commercial acquisition of Steemit, a decentralized social networking platform. After the acquisition was announced, the Steemit community launched a soft fork to resist the project being controlled by TRON. However, Justin Sun voted with the support of trading platforms such as Binance, Huobi and Poloniex to prevent a soft fork.
After being questioned by users, Binance and Huobi said that they would no longer interfere in the voting of the Steemit community. However, hkdev 404 of the Steem community again reveived votes from Huobi accounts. It is said that nearly 40 million votes were cast during the incident, accounting for about 10% of the total circulation of STEEM tokens.
There is no doubt that when the trading platform monopolizes the industry, we will lose our voting right.
How do we defend our voting rights
The fact that the ownership of the tokens belongs to the holders is indisputable, but what about the voting rights of the tokens deposited on the trading platform? How can we defend our voting rights after trading platforms have monopolized the industry?

Trading Platform Model

Traditional centralized trading platforms will assign to each user a separate deposit address. After depositing, the depositedamount will be added into the cold wallet and hot wallet. When users want to withdraw their tokens, the trading platform will transfer the tokens out of the hot wallet. If there is insufficient balance in the hot wallet, then the tokens will be transferred from the cold wallet to the hot wallet, and then be withdrawn.
Under the traditional centralized trading platform model, once users transfer their tokens into a trading platform, it means thetoken ownership (including voting rights) is also transferred to that trading platform.
The aelf solution: classify token permissions and claim back voting rights
For the issue of “voting rights” between token holders and centralized trading platforms, aelf, a decentralized cloud computing blockchain network, has proposed a solution: to establish an aelf Centre Asset Management Contract on the chain. The contract can limit the funds entering the exchange and define different permissions to control the assets.
The main feature of the aelf Centre Asset Management Contract is to create the “Main Virtual Address of the Trading Platform”.
Each exchange has a main virtual address, which can only be used for transfer operation, but not for voting, trading and other operations. As a result, the exchange cannot misappropriate users’ assets for voting. At the same time, the assets of the primary virtual address are publicly available on the chain, which makes it more difficult for the exchange to misappropriate assets.
At the same time, the aelf Centre Asset Management Contract also has the function of “address definition”. The exchange can open different permissions to different addresses, such as opening different permissions according to the amount, transactions exceeding a certain amount can only be given the greenlight by using multiple signatures, and the assets can be frozen through the contract when the assets of the trading platform are stolen, etc.
For the users of the trading platform, the access of the trading platform to the aelf Center Asset Management Contract function will not undermine user experience. The virtual system address of the aelf Center Asset Management Contract will assign a virtual address to each user, which offers the same user experience as the traditional mode.
For the trading platform, each deposit address constructed by the virtual address system is generated by the algorithm and does not need to be carried out on the blockchain. This means that the trading platform does not need to manage a large number of private keys, and there is no risk that the private keys will be lost.
On the most important “voting rights” issue, the aelf Center Asset Management Contract will assign to each user a separate virtual address for voting:
Voting address = Hash (Exchange Main Address + Token + “VOTE”)
Voting process: the tokens are transferred from the main virtual address of the exchange to the special “voting address” for voting, and are then voted. After voting, the tokens are withdrawn from the voting address back to the main virtual address.
We can see that the aelf Centre Asset Management Contract proposed by aelf can improve the efficiency of the trading platform without affecting user experience. In addition, it solves the problem that users would lose their voting rights.
According to the data on Crypto Mode, the market value of PoS tokens has exceeded $33 billion without counting Ethereum. In the field of crypto, it is the biggest ecosystem next to Bitcoin. The most important function of PoS is vote staking. faced with bigtrading platforms, if the status quo continues, retail investors will gradually lose their “voting rights” that belong to them.

Comparison of Market Value of PoS tokens (Source: Crypto Mode)
The emergence of DAO offers an alternative to trading platforms who misappropriate users’ tokens, but it still can not change this situation. Of course, DAO will not die out. Small communities will still use DAO for community governance. The idea behind the design of aelf is to start from the underlying trading platform and solve this issue at the source. Whether the solution can work still takes time. However, as a member of the crypto industry, we should understand the importance of “voting rights”, and cannot allow the exchange to seize our rights at will.
Recently, aelf has also announced its DeFi plan, which includes a new blockchain 3.0 project with a large number of new technical features, such as cross chain function, virtual address and cloud services. Aelf also proposed a set of interoperability solutions with ERC-20 tokens. It can directly access the ETH ecosystem, allow ETH-based applications and wallets to directly access it, and maintain the interoperability with ETH. And aelf will provide a high-performance smart contract operation platform and cloud services that can support cross chain interaction. Users on major cloud servers can easily run aelf’s services and adjust the scale of cloud according to their own business needs.
The implementation of a slew of tools, cloud services and interoperability solutions developed by aelf means that centralized transactions can be directly connected to the aelf network, realizing one-click adaptation to the DeFi ecosystem. With aelf, CeFi and DeFi are able to learn from and complement each other.
submitted by Floris-Jan to aelfofficial [link] [comments]

How To End The Cryptocurrency Exchange "Wild West" Without Crippling Innovation


In case you haven't noticed the consultation paper, staff notice, and report on Quadriga, regulators are now clamping down on Canadian cryptocurrency exchanges. The OSC and other regulatory bodies are still interested in industry feedback. They have not put forward any official regulation yet. Below are some ideas/insights and a proposed framework.



Many of you have limited time to read the full proposal, so here are the highlights:

Offline Multi-Signature

Effective standards to prevent both internal and external theft. Exchange operators are trained and certified, and have a legal responsibility to users.

Regular Transparent Audits

Provides visibility to Canadians that their funds are fully backed on the exchange, while protecting privacy and sensitive platform information.

Insurance Requirements

Establishment of basic insurance standards/strategy, to expand over time. Removing risk to exchange users of any hot wallet theft.


Background and Justifications


Cold Storage Custody/Management
After reviewing close to 100 cases, all thefts tend to break down into more or less the same set of problems:
• Funds stored online or in a smart contract,
• Access controlled by one person or one system,
• 51% attacks (rare),
• Funds sent to the wrong address (also rare), or
• Some combination of the above.
For the first two cases, practical solutions exist and are widely implemented on exchanges already. Offline multi-signature solutions are already industry standard. No cases studied found an external theft or exit scam involving an offline multi-signature wallet implementation. Security can be further improved through minimum numbers of signatories, background checks, providing autonomy and legal protections to each signatory, establishing best practices, and a training/certification program.
The last two transaction risks occur more rarely, and have never resulted in a loss affecting the actual users of the exchange. In all cases to date where operators made the mistake, they've been fully covered by the exchange platforms.
• 51% attacks generally only occur on blockchains with less security. The most prominent cases have been Bitcoin Gold and Ethereum Classic. The simple solution is to enforce deposit limits and block delays such that a 51% attack is not cost-effective.
• The risk of transactions to incorrect addresses can be eliminated by a simple test transaction policy on large transactions. By sending a small amount of funds prior to any large withdrawals/transfers as a standard practice, the accuracy of the wallet address can be validated.
The proposal covers all loss cases and goes beyond, while avoiding significant additional costs, risks, and limitations which may be associated with other frameworks like SOC II.

On The Subject of Third Party Custodians
Many Canadian platforms are currently experimenting with third party custody. From the standpoint of the exchange operator, they can liberate themselves from some responsibility of custody, passing that off to someone else. For regulators, it puts crypto in similar categorization to oil, gold, and other commodities, with some common standards. Platform users would likely feel greater confidence if the custodian was a brand they recognized. If the custodian was knowledgeable and had a decent team that employed multi-sig, they could keep assets safe from internal theft. With the right protections in place, this could be a great solution for many exchanges, particularly those that lack the relevant experience or human resources for their own custody systems.
However, this system is vulnerable to anyone able to impersonate the exchange operators. You may have a situation where different employees who don't know each other that well are interacting between different companies (both the custodian and all their customers which presumably isn't just one exchange). A case study of what can go wrong in this type of environment might be Bitpay, where the CEO was tricked out of 5000 bitcoins over 3 separate payments by a series of emails sent legitimately from a breached computer of another company CEO. It's also still vulnerable to the platform being compromised, as in the really large $70M Bitfinex hack, where the third party Bitgo held one key in a multi-sig wallet. The hacker simply authorized the withdrawal using the same credentials as Bitfinex (requesting Bitgo to sign multiple withdrawal transactions). This succeeded even with the use of multi-sig and two heavily security-focused companies, due to the lack of human oversight (basically, hot wallet). Of course, you can learn from these cases and improve the security, but so can hackers improve their deception and at the end of the day, both of these would have been stopped by the much simpler solution of a qualified team who knew each other and employed multi-sig with properly protected keys. It's pretty hard to beat a human being who knows the business and the typical customer behaviour (or even knows their customers personally) at spotting fraud, and the proposed multi-sig means any hacker has to get through the scrutiny of 3 (or more) separate people, all of whom would have proper training including historical case studies.
There are strong arguments both for and against using use of third party custodians. The proposal sets mandatory minimum custody standards would apply regardless if the cold wallet signatories are exchange operators, independent custodians, or a mix of both.

On The Subject Of Insurance
ShakePay has taken the first steps into this new realm (congratulations). There is no question that crypto users could be better protected by the right insurance policies, and it certainly feels better to transact with insured platforms. The steps required to obtain insurance generally place attention in valuable security areas, and in this case included a review from CipherTrace. One of the key solutions in traditional finance comes from insurance from entities such as the CDIC.
However, historically, there wasn't found any actual insurance payout to any cryptocurrency exchange, and there are notable cases where insurance has not paid. With Bitpay, for example, the insurance agent refused because the issue happened to the third party CEO's computer instead of anything to do with Bitpay itself. With the Youbit exchange in South Korea, their insurance claim was denied, and the exchange ultimately ended up instead going bankrupt with all user's funds lost. To quote Matt Johnson in the original Lloyd's article: “You can create an insurance policy that protects no one – you know there are so many caveats to the policy that it’s not super protective.”
ShakePay's insurance was only reported to cover their cold storage, and “physical theft of the media where the private keys are held”. Physical theft has never, in the history of cryptocurrency exchange cases reviewed, been reported as the cause of loss. From the limited information of the article, ShakePay made it clear their funds are in the hands of a single US custodian, and at least part of their security strategy is to "decline[] to confirm the custodian’s name on the record". While this prevents scrutiny of the custodian, it's pretty silly to speculate that a reasonably competent hacking group couldn't determine who the custodian is. A far more common infiltration strategy historically would be social engineering, which has succeeded repeatedly. A hacker could trick their way into ShakePay's systems and request a fraudulent withdrawal, impersonate ShakePay and request the custodian to move funds, or socially engineer their way into the custodian to initiate the withdrawal of multiple accounts (a payout much larger than ShakePay) exploiting the standard procedures (for example, fraudulently initiating or override the wallet addresses of a real transfer). In each case, nothing was physically stolen and the loss is therefore not covered by insurance.
In order for any insurance to be effective, clear policies have to be established about what needs to be covered. Anything short of that gives Canadians false confidence that they are protected when they aren't in any meaningful way. At this time, the third party insurance market does not appear to provide adequate options or coverage, and effort is necessary to standardize custody standards, which is a likely first step in ultimately setting up an insurance framework.
A better solution compared to third party insurance providers might be for Canadian exchange operators to create their own collective insurance fund, or a specific federal organization similar to the CDIC. Such an organization would have a greater interest or obligation in paying out actual cases, and that would be it's purpose rather than maximizing it's own profit. This would be similar to the SAFU which Binance has launched, except it would cover multiple exchanges. There is little question whether the SAFU would pay out given a breach of Binance, and a similar argument could be made for a insurance fund managed by a collective of exchange operators or a government organization. While a third party insurance provider has the strong market incentive to provide the absolute minimum coverage and no market incentive to payout, an entity managed by exchange operators would have incentive to protect the reputation of exchange operators/the industry, and the government should have the interest of protecting Canadians.

On The Subject of Fractional Reserve
There is a long history of fractional reserve failures, from the first banks in ancient times, through the great depression (where hundreds of fractional reserve banks failed), right through to the 2008 banking collapse referenced in the first bitcoin block. The fractional reserve system allows banks to multiply the money supply far beyond the actual cash (or other assets) in existence, backed only by a system of debt obligations of others. Safely supporting a fractional reserve system is a topic of far greater complexity than can be addressed by a simple policy, and when it comes to cryptocurrency, there is presently no entity reasonably able to bail anyone out in the event of failure. Therefore, this framework is addressed around entities that aim to maintain 100% backing of funds.
There may be some firms that desire but have failed to maintain 100% backing. In this case, there are multiple solutions, including outside investment, merging with other exchanges, or enforcing a gradual restoration plan. All of these solutions are typically far better than shutting down the exchange, and there are multiple cases where they've been used successfully in the past.

Proof of Reserves/Transparency/Accountability
Canadians need to have visibility into the backing on an ongoing basis.
The best solution for crypto-assets is a Proof of Reserve. Such ideas go back all the way to 2013, before even Mt. Gox. However, no Canadian exchange has yet implemented such a system, and only a few international exchanges (CoinFloor in the UK being an example) have. Many firms like Kraken, BitBuy, and now ShakePay use the Proof of Reserve term to refer to lesser proofs which do not actually cryptographically prove the full backing of all user assets on the blockchain. In order for a Proof of Reserve to be effective, it must actually be a complete proof, and it needs to be understood by the public that is expected to use it. Many firms have expressed reservations about the level of transparency required in a complete Proof of Reserve (for example Kraken here). While a complete Proof of Reserves should be encouraged, and there are some solutions in the works (ie TxQuick), this is unlikely to be suitable universally for all exchange operators and users.
Given the limitations, and that firms also manage fiat assets, a more traditional audit process makes more sense. Some Canadian exchanges (CoinSquare, CoinBerry) have already subjected themselves to annual audits. However, these results are not presently shared publicly, and there is no guarantee over the process including all user assets or the integrity and independence of the auditor. The auditor has been typically not known, and in some cases, the identity of the auditor is protected by a NDA. Only in one case (BitBuy) was an actual report generated and publicly shared. There has been no attempt made to validate that user accounts provided during these audits have been complete or accurate. A fraudulent fractional exchange, or one which had suffered a breach they were unwilling to publicly accept (see CoinBene), could easily maintain a second set of books for auditors or simply exclude key accounts to pass an individual audit.
The proposed solution would see a reporting standard which includes at a minimum - percentage of backing for each asset relative to account balances and the nature of how those assets are stored, with ownership proven by the auditor. The auditor would also publicly provide a "hash list", which they independently generate from the accounts provided by the exchange. Every exchange user can then check their information against this public "hash list". A hash is a one-way form of encryption, which fully protects the private information, yet allows anyone who knows that information already to validate that it was included. Less experienced users can take advantage of public tools to calculate the hash from their information (provided by the exchange), and thus have certainty that the auditor received their full balance information. Easy instructions can be provided.
Auditors should be impartial, their identities and process public, and they should be rotated so that the same auditor is never used twice in a row. Balancing the cost of auditing against the needs for regular updates, a 6 month cycle likely makes the most sense.

Hot Wallet Management
The best solution for hot wallets is not to use them. CoinBerry reportedly uses multi-sig on all withdrawals, and Bitmex is an international example known for their structure devoid of hot wallets.
However, many platforms and customers desire fast withdrawal processes, and human validation has a cost of time and delay in this process.
A model of self-insurance or separate funds for hot wallets may be used in these cases. Under this model, a platform still has 100% of their client balance in cold storage and holds additional funds in hot wallets for quick withdrawal. Thus, the risk of those hot wallets is 100% on exchange operators and not affecting the exchange users. Since most platforms typically only have 1%-5% in hot wallets at any given time, it shouldn't be unreasonable to build/maintain these additional reserves over time using exchange fees or additional investment. Larger withdrawals would still be handled at regular intervals from the cold storage.
Hot wallet risks have historically posed a large risk and there is no established standard to guarantee secure hot wallets. When the government of South Korea dispatched security inspections to multiple exchanges, the results were still that 3 of them got hacked after the inspections. If standards develop such that an organization in the market is willing to insure the hot wallets, this could provide an acceptable alternative. Another option may be for multiple exchange operators to pool funds aside for a hot wallet insurance fund. Comprehensive coverage standards must be established and maintained for all hot wallet balances to make sure Canadians are adequately protected.

Current Draft Proposal

(1) Proper multi-signature cold wallet storage.
(a) Each private key is the personal and legal responsibility of one person - the “signatory”. Signatories have special rights and responsibilities to protect user assets. Signatories are trained and certified through a course covering (1) past hacking and fraud cases, (2) proper and secure key generation, and (3) proper safekeeping of private keys. All private keys must be generated and stored 100% offline by the signatory. If even one private keys is ever breached or suspected to be breached, the wallet must be regenerated and all funds relocated to a new wallet.
(b) All signatories must be separate background-checked individuals free of past criminal conviction. Canadians should have a right to know who holds their funds. All signing of transactions must take place with all signatories on Canadian soil or on the soil of a country with a solid legal system which agrees to uphold and support these rules (from an established white-list of countries which expands over time).
(c) 3-5 independent signatures are required for any withdrawal. There must be 1-3 spare signatories, and a maximum of 7 total signatories. The following are all valid combinations: 3of4, 3of5, 3of6, 4of5, 4of6, 4of7, 5of6, or 5of7.
(d) A security audit should be conducted to validate the cold wallet is set up correctly and provide any additional pertinent information. The primary purpose is to ensure that all signatories are acting independently and using best practices for private key storage. A report summarizing all steps taken and who did the audit will be made public. Canadians must be able to validate the right measures are in place to protect their funds.
(e) There is a simple approval process if signatories wish to visit any country outside Canada, with a potential whitelist of exempt countries. At most 2 signatories can be outside of aligned jurisdiction at any given time. All exchanges would be required to keep a compliant cold wallet for Canadian funds and have a Canadian office if they wish to serve Canadian customers.
(2) Regular and transparent solvency audits.
(a) An audit must be conducted at founding, after 3 months of operation, and at least once every 6 months to compare customer balances against all stored cryptocurrency and fiat balances. The auditor must be known, independent, and never the same twice in a row.
(b) An audit report will be published featuring the steps conducted in a readable format. This should be made available to all Canadians on the exchange website and on a government website. The report must include what percentage of each customer asset is backed on the exchange, and how those funds are stored.
(c) The auditor will independently produce a hash of each customer's identifying information and balance as they perform the audit. This will be made publicly available on the exchange and government website, along with simplified instructions that each customer can use to verify that their balance was included in the audit process.
(d) The audit needs to include a proof of ownership for any cryptocurrency wallets included. A satoshi test (spending a small amount) or partially signed transaction both qualify.
(e) Any platform without 100% reserves should be assessed on a regular basis by a government or industry watchdog. This entity should work to prevent any further drop, support any private investor to come in, or facilitate a merger so that 100% backing can be obtained as soon as possible.
(3) Protections for hot wallets and transactions.
(a) A standardized list of approved coins and procedures will be established to constitute valid cold storage wallets. Where a multi-sig process is not natively available, efforts will be undertaken to establish a suitable and stable smart contract standard. This list will be expanded and improved over time. Coins and procedures not on the list are considered hot wallets.
(b) Hot wallets can be backed by additional funds in cold storage or an acceptable third-party insurance provider with a comprehensive coverage policy.
(c) Exchanges are required to cover the full balance of all user funds as denominated in the same currency, or double the balance as denominated in bitcoin or CAD using an established trading rate. If the balance is ever insufficient due to market movements, the firm must rectify this within 24 hours by moving assets to cold storage or increasing insurance coverage.
(d) Any large transactions (above a set threshold) from cold storage to any new wallet addresses (not previously transacted with) must be tested with a smaller transaction first. Deposits of cryptocurrency must be limited to prevent economic 51% attacks. Any issues are to be covered by the exchange.
(e) Exchange platforms must provide suitable authentication for users, including making available approved forms of two-factor authentication. SMS-based authentication is not to be supported. Withdrawals must be blocked for 48 hours in the event of any account password change. Disputes on the negligence of exchanges should be governed by case law.

Steps Forward

Continued review of existing OSC feedback is still underway. More feedback and opinions on the framework and ideas as presented here are extremely valuable. The above is a draft and not finalized.
The process of further developing and bringing a suitable framework to protect Canadians will require the support of exchange operators, legal experts, and many others in the community. The costs of not doing such are tremendous. A large and convoluted framework, one based on flawed ideas or implementation, or one which fails to properly safeguard Canadians is not just extremely expensive and risky for all Canadians, severely limiting to the credibility and reputation of the industry, but an existential risk to many exchanges.
The responsibility falls to all of us to provide our insight and make our opinions heard on this critical matter. Please take the time to give your thoughts.
submitted by azoundria2 to QuadrigaInitiative [link] [comments]

Let's discuss some of the issues with Nano

Let's talk about some of Nano's biggest issues. I also made a video about this topic, available here: https://youtu.be/d9yb9ifurbg.
00:12 Spam
Issues
Potential Mitigations & Outstanding Issues
01:58 Privacy
Issues
  • Nano has no privacy. It is pseudonymous (like Bitcoin), not anonymous.
Potential Mitigations & Outstanding Issues & Outstanding Issues*
  • Second layer solutions like mixers can help, but some argue that isn't enough privacy.
  • The current protocol design + the computational overhead of privacy does not allow Nano to implement first layer privacy without compromising it's other features (fast, feeless, and scalable transactions).
02:56 Decentralization
Issues
  • Nano is currently not as decentralized as it could be. ~25% of the voting weight is held by Binance.
  • Users must choose representatives, and users don't always choose the best ones (or never choose).
Potential Mitigations & Outstanding Issues
  • Currently 4 unrelated parties (who all have a verifiable interest in keeping the network running) would have to work together to attack the network
  • Unlike Bitcoin, there is no mining or fees in Nano. This means that there is not a strong incentive for emergent centralization from profit maximization and economies of scale. We've seen this firsthand, as Nano's decentralization has increased over time.
  • Nano representative percentages are not that far off from Bitcoin mining pool percentages.
  • In Nano, voting weight can be remotely re-delegated to anyone at any time. This differs from Bitcoin, where consensus is controlled by miners and requires significant hardware investment.
  • The cost of a 51% attack scales with the market cap of Nano.
06:49 Marketing & adoption
Issues
  • The best technology doesn't always win. If no one knows about or uses Nano, it will die.
Potential Mitigations & Outstanding Issues
  • I would argue that the best technology typically does win, but it needs to be best in every way (price, speed, accessbility, etc). Nano is currently in a good place if you agree with that argument.
  • Bitcoin started small, and didn't spend money on marketing. It takes time to build a community.
  • The developers have said they will market more once the protocol is where they want it to be (v20 or v21?).
  • Community marketing initiatives have started to form organically (e.g. Twitter campaigns, YouTube ads, etc).
  • Marketing and adoption is a very difficult problem to solve, especially when you don't have first mover advantage or consistent cashflow.
08:07 Small developer fund
Issues
  • The developer fund only has 3 million NANO left (~$4MM), what happens after that?
Potential Mitigations & Outstanding Issues
  • The goal for Nano is to be an Internet RFC like TCP/IP or SMTP - development naturally slows down when the protocol is in a good place.
  • Nano development is completely open source, so anyone can participate. Multiple developers are now familiar with the Nano protocol.
  • Businesses and whales that benefit from Nano (exchanges, remittances, merchant services, etc) are incentivized to keep the protocol developed and running.
  • The developer fund was only ~5% of the supply - compare that to some of the other major cryptocurrencies.
10:08 Node incentives
Issues
  • There are no transaction fees, why would people run nodes to keep the network running?
Potential Mitigations & Outstanding Issues
  • The cost of consensus is so low in Nano that the benefits of the network itself are the incentive: decentralized money with 0 transaction fees that can be sent anywhere in the world nearly instantly. Similar to TCP/IP, email servers, and http servers. Just like Bitcoin full nodes.
  • Paying $50-$100 a month for a high-end node is a lot cheaper for merchants than paying 1-3% in total sales.
  • Businesses and whales that benefit from Nano (exchanges, remittances, merchant services, etc) are incentivized to keep the protocol developed and running.
11:58 No smart contracts
Issues
  • Nano doesn't support smart contracts.
Potential Mitigations & Outstanding Issues
  • Nano's sole goal is to be the most efficient peer-to-peer value transfer protocol possible. Adding smart contracts makes keeping Nano feeless, fast, and decentralized much more difficult.
  • Other solutions (e.g. Ethereum) exist for creating and enforcing smart contracts.
  • Code can still interact with Nano, but not on the first layer in a decentralized matter.
  • Real world smart contract adoption and usage is pretty limited at the moment, but that might not always be the case.
13:20 Price stability
Issues
  • Why would anyone accept or spend Nano if the price fluctuates so much?
  • Why wouldn't people just use a stablecoin version of Nano for sending and receiving money?
Potential Mitigations & Outstanding Issues
  • With good fiat gateways (stable, low fees, etc), you can always buy back the fiat equivalent of what you've spent.
  • The hope is that with enough adoption, people and businesses will eventually skip the fiat conversion and use Nano directly.
  • Because Nano is so fast, volatility is less of an issue. Transactions are confirmed in <10 seconds, and prices change less in that timeframe (vs 10 minutes to hours for Bitcoin).
  • Stablecoins reintroduce trust. Stable against what? Who controls the supply, and how do you get people to adopt them? What happens if the assets they're stable against fail? Nano is pure supply and demand.
  • With worldwide adoption, the market capitalization of Nano would be in the trillions. If that happens, even millions of dollars won't move the price significantly.
15:06 Deflation
Issues
  • Nano's current supply == max supply. Why would people spend Nano today if it could be worth more tomorrow?
  • What happens to principal representatives and voting weight as private keys are lost? How do you know keys are lost?
Potential Mitigations & Outstanding Issues
  • Nano is extremely divisible. 1 NANO is 1030 raw. Since there are no transaction fees, smaller and smaller amounts of Nano could be used to transact, even if the market cap reaches trillions.
  • People will always buy things they need (food, housing, etc).
  • I'm not sure what the plan is to adjust for lost keys. Probably requires more discussion.
Long-term Scalability
Issue
  • Current node software and hardware cannot handle thousands of TPS (low-end nodes fall behind at even 50 TPS).
  • The more representatives that exist, the more vote traffic is required (network bandwidth).
  • Low-end nodes currently slow down the network significantly. Principal representatives waste their resources constantly bootstrapping these weak nodes during network saturation.
Potential Mitigations & Outstanding Issues
  • Even as is, Nano can comfortably handle 50 TPS average - which is roughly the amount of transactions per day PayPal was doing in 2011 with nearly 100 million users.
  • Network bandwidth increases 50% a year.
  • There are some discussions of prioritizing bootstrapping by vote weight to limit the impact of weak nodes.
  • Since Nano uses an account balance system, pruning could drastically reduce storage requirements. You only need current state to keep the network running, not the full transaction history.
  • In the future, vote stapling could drastically reduce bandwidth usage by collecting all representative signatures up front and then only sharing that single aggregate signature.
  • Nano has no artificial protocol-based limits (e.g. block sizes or block times). It scales with hardware.
Obviously there is still a lot of work to be done in some areas, but overall I think Nano is a good place. For people that aren't Nano fans, what are your biggest concerns?
submitted by Qwahzi to CryptoCurrency [link] [comments]

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.
  • Bitcoin (BTC) is a peer-to-peer cryptocurrency that aims to function as a means of exchange that is independent of any central authority. BTC can be transferred electronically in a secure, verifiable, and immutable way.
  • Launched in 2009, BTC is the first virtual currency to solve the double-spending issue by timestamping transactions before broadcasting them to all of the nodes in the Bitcoin network. The Bitcoin Protocol offered a solution to the Byzantine Generals’ Problem with a blockchain network structure, a notion first created by Stuart Haber and W. Scott Stornetta in 1991.
  • Bitcoin’s whitepaper was published pseudonymously in 2008 by an individual, or a group, with the pseudonym “Satoshi Nakamoto”, whose underlying identity has still not been verified.
  • The Bitcoin protocol uses an SHA-256d-based Proof-of-Work (PoW) algorithm to reach network consensus. Its network has a target block time of 10 minutes and a maximum supply of 21 million tokens, with a decaying token emission rate. To prevent fluctuation of the block time, the network’s block difficulty is re-adjusted through an algorithm based on the past 2016 block times.
  • With a block size limit capped at 1 megabyte, the Bitcoin Protocol has supported both the Lightning Network, a second-layer infrastructure for payment channels, and Segregated Witness, a soft-fork to increase the number of transactions on a block, as solutions to network scalability.

https://preview.redd.it/s2gmpmeze3151.png?width=256&format=png&auto=webp&s=9759910dd3c4a15b83f55b827d1899fb2fdd3de1

1. What is Bitcoin (BTC)?

  • Bitcoin is a peer-to-peer cryptocurrency that aims to function as a means of exchange and is independent of any central authority. Bitcoins are transferred electronically in a secure, verifiable, and immutable way.
  • Network validators, whom are often referred to as miners, participate in the SHA-256d-based Proof-of-Work consensus mechanism to determine the next global state of the blockchain.
  • The Bitcoin protocol has a target block time of 10 minutes, and a maximum supply of 21 million tokens. The only way new bitcoins can be produced is when a block producer generates a new valid block.
  • The protocol has a token emission rate that halves every 210,000 blocks, or approximately every 4 years.
  • Unlike public blockchain infrastructures supporting the development of decentralized applications (Ethereum), the Bitcoin protocol is primarily used only for payments, and has only very limited support for smart contract-like functionalities (Bitcoin “Script” is mostly used to create certain conditions before bitcoins are used to be spent).

2. Bitcoin’s core features

For a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.

Unspent Transaction Output (UTXO) model

A UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.
https://preview.redd.it/t1j6anf8f3151.png?width=1601&format=png&auto=webp&s=33bd141d8f2136a6f32739c8cdc7aae2e04cbc47

Nakamoto consensus

In the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).
The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer.
Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs.
As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”).
Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so.
With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic.
Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers.

The blockchain

Block production

The Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.
With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”).
An illustration of block production in the Bitcoin Protocol is demonstrated below.

https://preview.redd.it/m6texxicf3151.png?width=1591&format=png&auto=webp&s=f4253304912ed8370948b9c524e08fef28f1c78d

Block time and mining difficulty

Block time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.
Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly.
Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase.

What are orphan blocks?

In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.
It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency.
Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted.
The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network.
However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability.

3. Bitcoin’s additional features

Segregated Witness (SegWit)

Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.
SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin.
SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become.
https://preview.redd.it/depya70mf3151.png?width=1601&format=png&auto=webp&s=a6499aa2131fbf347f8ffd812930b2f7d66be48e
The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit.
Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade.
Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values.
For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890.
Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid.
This can create many issues, as illustrated in the below example:
  1. Alice sends Bob 1 BTC, and Bob sends Merchant Carol this 1 BTC for some goods.
  2. Bob sends Carols this 1 BTC, while the transaction from Alice to Bob is not yet validated. Carol sees this incoming transaction of 1 BTC to him, and immediately ships goods to B.
  3. At the moment, the transaction from Alice to Bob is still not confirmed by the network, and Bob can change the witness signature, therefore changing this transaction ID from 12345 to 67890.
  4. Now Carol will not receive his 1 BTC, as the network looks for transaction 12345 to ensure that Bob’s wallet balance is valid.
  5. As this particular transaction ID changed from 12345 to 67890, the transaction from Bob to Carol will fail, and Bob will get his goods while still holding his BTC.
With the Segregated Witness upgrade, such instances can not happen again. This is because the witness signatures are moved outside of the transaction block into an extended block, and altering the witness signature won’t affect the transaction ID.
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network.

Lightning Network

Lightning Network is a second-layer micropayment solution for scalability.
Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins.
Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ.
A list of curated resources relevant to Lightning Network can be found here.
In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions.
Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel.
https://preview.redd.it/cy56icarf3151.png?width=1601&format=png&auto=webp&s=b239a63c6a87ec6cc1b18ce2cbd0355f8831c3a8
One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel.
However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications.

Schnorr Signature upgrade proposal

Elliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.
https://preview.redd.it/hjeqe4l7g3151.png?width=1601&format=png&auto=webp&s=8014fb08fe62ac4d91645499bc0c7e1c04c5d7c4
However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys.
This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block.
https://preview.redd.it/axg3wayag3151.png?width=1601&format=png&auto=webp&s=93d958fa6b0e623caa82ca71fe457b4daa88c71e
The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually.
Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction.

4. Economics and supply distribution

The Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.
As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners.
submitted by D-platform to u/D-platform [link] [comments]

What are Nano's biggest issues? Let's talk about it!

Let's talk about some of Nano's biggest issues. I also made a video about this topic, available here: https://youtu.be/d9yb9ifurbg.
00:12 Spam
Issues
Potential Mitigations & Outstanding Issues
01:58 Privacy
Issues
  • Nano has no privacy. It is pseudonymous (like Bitcoin), not anonymous.
Potential Mitigations & Outstanding Issues & Outstanding Issues*
  • Second layer solutions like mixers can help, but some argue that isn't enough privacy.
  • The current protocol design + the computational overhead of privacy does not allow Nano to implement first layer privacy without compromising it's other features (fast, feeless, and scalable transactions).
02:56 Decentralization
Issues
  • Nano is currently not as decentralized as it could be. ~25% of the voting weight is held by Binance.
  • Users must choose representatives, and users don't always choose the best ones (or never choose).
Potential Mitigations & Outstanding Issues
  • Currently 4 unrelated parties (who all have a verifiable interest in keeping the network running) would have to work together to attack the network
  • Unlike Bitcoin, there is no mining or fees in Nano. This means that there is not a strong incentive for emergent centralization from profit maximization and economies of scale. We've seen this firsthand, as Nano's decentralization has increased over time.
  • Nano representative percentages are not that far off from Bitcoin mining pool percentages.
  • In Nano, voting weight can be remotely re-delegated to anyone at any time. This differs from Bitcoin, where consensus is controlled by miners and requires significant hardware investment.
  • The cost of a 51% attack scales with the market cap of Nano.
06:49 Marketing & adoption
Issues
  • The best technology doesn't always win. If no one knows about or uses Nano, it will die.
Potential Mitigations & Outstanding Issues
  • I would argue that the best technology typically does win, but it needs to be best in every way (price, speed, accessbility, etc). Nano is currently in a good place if you agree with that argument.
  • Bitcoin started small, and didn't spend money on marketing. It takes time to build a community.
  • The developers have said they will market more once the protocol is where they want it to be (v20 or v21?).
  • Community marketing initiatives have started to form organically (e.g. Twitter campaigns, YouTube ads, etc).
  • Marketing and adoption is a very difficult problem to solve, especially when you don't have first mover advantage or consistent cashflow.
08:07 Small developer fund
Issues
  • The developer fund only has 3 million NANO left (~$4MM), what happens after that?
Potential Mitigations & Outstanding Issues
  • The goal for Nano is to be an Internet RFC like TCP/IP or SMTP - development naturally slows down when the protocol is in a good place.
  • Nano development is completely open source, so anyone can participate. Multiple developers are now familiar with the Nano protocol.
  • Businesses and whales that benefit from Nano (exchanges, remittances, merchant services, etc) are incentivized to keep the protocol developed and running.
  • The developer fund was only ~5% of the supply - compare that to some of the other major cryptocurrencies.
10:08 Node incentives
Issues
  • There are no transaction fees, why would people run nodes to keep the network running?
Potential Mitigations & Outstanding Issues
  • The cost of consensus is so low in Nano that the benefits of the network itself are the incentive: decentralized money with 0 transaction fees that can be sent anywhere in the world nearly instantly.
  • Paying $50-$100 a month for a high-end node is a lot cheaper for merchants than paying 1-3% in total sales.
  • Businesses and whales that benefit from Nano (exchanges, remittances, merchant services, etc) are incentivized to keep the protocol developed and running.
11:58 No smart contracts
Issues
  • Nano doesn't support smart contracts.
Potential Mitigations & Outstanding Issues
  • Nano's sole goal is to be the most efficient peer-to-peer value transfer protocol possible. Adding smart contracts makes keeping Nano feeless, fast, and decentralized much more difficult.
  • Other solutions (e.g. Ethereum) exist for creating and enforcing smart contracts.
  • Code can still interact with Nano, but not on the first layer in a decentralized matter.
  • Real world smart contract adoption and usage is pretty limited at the moment, but that might not always be the case.
13:20 Price stability
Issues
  • Why would anyone accept or spend Nano if the price fluctuates so much?
  • Why wouldn't people just use a stablecoin version of Nano for sending and receiving money?
Potential Mitigations & Outstanding Issues
  • With good fiat gateways (stable, low fees, etc), you can always buy back the fiat equivalent of what you've spent.
  • The hope is that with enough adoption, people and businesses will eventually skip the fiat conversion and use Nano directly.
  • Because Nano is so fast, volatility is less of an issue. Transactions are confirmed in <10 seconds, and prices change less in that timeframe (vs 10 minutes to hours for Bitcoin).
  • Stablecoins reintroduce trust. Stable against what? Who controls the supply, and how do you get people to adopt them? What happens if the assets they're stable against fail? Nano is pure supply and demand.
  • With worldwide adoption, the market capitalization of Nano would be in the trillions. If that happens, even millions of dollars won't move the price significantly.
15:06 Deflation
Issues
  • Nano's current supply == max supply. Why would people spend Nano today if it could be worth more tomorrow?
  • What happens to principal representatives and voting weight as private keys are lost? How do you know keys are lost?
Potential Mitigations & Outstanding Issues
  • Nano is extremely divisible. 1 NANO is 1030 raw. Since there are no transaction fees, smaller and smaller amounts of Nano could be used to transact, even if the market cap reaches trillions.
  • People will always buy things they need (food, housing, etc).
  • I'm not sure what the plan is to adjust for lost keys. Probably requires more discussion.
Long-term Scalability
Issue
  • Current node software and hardware cannot handle thousands of TPS (low-end nodes fall behind at even 50 TPS).
  • The more representatives that exist, the more vote traffic is required (network bandwidth).
  • Low-end nodes currently slow down the network significantly. Principal representatives waste their resources constantly bootstrapping these weak nodes during network saturation.
Potential Mitigations & Outstanding Issues
  • Even as is, Nano can comfortably handle 50 TPS average - which is roughly the amount of transactions per day PayPal was doing in 2011 with nearly 100 million users.
  • Network bandwidth increases 50% a year.
  • There are some discussions of prioritizing bootstrapping by vote weight to limit the impact of weak nodes.
  • Since Nano uses an account balance system, pruning could drastically reduce storage requirements. You only need current state to keep the network running, not the full transaction history.
  • In the future, vote stapling could drastically reduce bandwidth usage by collecting all representative signatures up front and then only sharing that single aggregate signature.
  • Nano has no artificial protocol-based limits (e.g. block sizes or block times). It scales with hardware.
submitted by Qwahzi to nanocurrency [link] [comments]

BTC IOTA ETH über eine Börse handeln?! Binance.com Kryptobörse und Multi-Wallet erklärt! BITCOIN $380K END GAME!! BINANCE LIBRA FORK? - Programmer Explains Binance Tutorial  ID & Face Verification #Binance Guide: How to Sell Crypto using Binance P2P Binance Launches Crypto Mining Pool Amid Centralization Concerns Binance Buying CoinMarketCap & Why It's Great for Bitcoin Price 7576$ Bitcoin, Komodo, Chainlink, NEO und Binance Coin in der Analyse Keeping your private keys secure Bitcoin Q&A: Binance hack, chain roll-back? Trust Wallet Tutorial: Binance Official Multi-Crypto ...

Since security must be a top preference when choosing a Bitcoin wallet, you should choose a wallet with multiple signatures. Many instituted exchanges offer one-stop solutions with high-security standards and reporting. Instead of having to produce and include 3 different public keys and a few different signatures, Schnorr based signatures remove the requirement of multiple keys and signatures. Under a Schnorr signature regime, the Bitcoin network only has to know about and record 1 public key and 1 digital signature which mathematically represent the entire multi-signature scheme. (Learn more about Threshold Signatures Explained on Binance Academy.) Key Features of the Binance TSS Solution: High Security: Implementing TSS is more secure, as multiple private key shares are distributed to different parties and private keys will not even be reconstructed during the signing of any transaction (e.g. withdrawing assets). And it takes the security of your funds seriously, employing multiple safety measures such as 2 factor authentication, anonymous trades, multiple offline signatures, cold storage, real-time risk ... When introduced in 2008 for the purpose of bitcoin trading, ... information ledgers in a DLT environment are able to support multiple service providers catering to several customers, which ultimately reduce cost of processing. Most importantly, information ledgers will support digital signature that does not require authentication. Nowadays, wet signatures and handling of enormous amount of ... The technology was first implemented to Bitcoin addresses in 2012, but the first multisig wallet was only created one year later. How does it work? In short, the funds stored on a multi-signature address can only be accessed when 2 or more signatures are provided at the same time. Multi signature bitcoin wallet is revolutionizing the crypto market with efficient key distribution, maintaining full transparency and enabling group decision-making. It saves users from frozen crypto accounts and insolvency risks. Bitcoin transactions require signatures, but these signatures take up significant block space. This situation gets worse when multiple addresses are involved in a transaction because each address needs its own signature. As a result, transaction size requirements increase, which, in turn, drive transaction fees higher. You see, they allow for things like signature aggregation, which combine the signatures of multiple signers into a single signature. The resulting “master signature” would still be the same length as a regular, one-person signature, leading to significant space savings. In addition, the combined signatures make it a lot more difficult for an observer to determine who signed (or didn’t ... A multisig wallet is a type of digital currency wallet that can only be accessed through a combination of multiple unique signatures signed by different private keys. It is analogous to a deposit box that has two separate locks and keys, secured by different individuals, respectively. Both individuals are required to access the box, therefore ...

[index] [23485] [9020] [3181] [23885] [16138] [13853] [2952] [17903] [4664] [639]

BTC IOTA ETH über eine Börse handeln?! Binance.com Kryptobörse und Multi-Wallet erklärt!

Binance Academy 8,808 views. 6:03 . How To Keep Your Cryptocurrency Safe - Duration: 6:21. Ameer Rosic Recommended for you. 6:21. Blockchain/Bitcoin for beginners 3: public/private keys ... Binance considered rolling back the Bitcoin chain in order to recover stolen funds. How would that have happened? How likely is it that such a recovery method would be executed in the future? binance anmelden binance iota kaufen binance exchange tutorial binance deposit binance coin kaufen, binance register binance buy iota binance buy bitcoin binance crypto binance coin wallet binance ... Users can buy and sell multiple cryptocurrencies using Chinese yuan, Vietnamese Dong and Russian Rubles with 0 fees on #BinanceP2P. Trade now at: p2p.binance.com. In this Binance tutorial, we walk you through the ID & Face Verification process which allows you to purchase cryptocurrency (xrp, btc, eth) on the platform. #Binance #BinanceTutorial # ... In today's video, we take a look at the binance expected acquisition of coinmarketcap and whether or not this is good for crypto. If you would like to be highlighted on my channel please reach out ... Binance Sign-up: https://www.binance.com/?ref=11298765 Trust wallet is a decentralized secure cryptocurrency mobile wallet. Within the Trust wallet, you ca... Robert Kiyosaki interview: Blockchain technology, AI, Crypto, Bitcoin BTC Halving 2020 Robert Kiyosaki 58,261 watching Live now BITCOIN VS WORLD DICTATORSHIP + Cypherium Review (Stack vs Register ... Binance Pool has received mixed responses from the crypto community, with some commentators expressing concerns that Binance's pool will result in a further centralization of Bitcoin ( BTC ) hash ... 27.09.2019 - #Bitcoin #Altcoins #Trading Wir analysieren heute Bitcoin, Komodo, Chainlink, NEO und Binance Coin. Bitcoin & Altcoin Bollinger Band Indikator f...

#